viernes, 27 de noviembre de 2009

TEMA DE EXPOSICION

CICLO RANKINE*

El Ciclo de Rankine es un ciclo termodinámico en el que se relaciona el consumo de calor con la producción de trabajo. Como otros ciclos termodinámicos, la máxima eficiencia termodinámica es dada por el cálculo de máxima eficiencia del Ciclo de Carnot. Debe su nombre a su desarrollador, el ingeniero y físico escocés William John Macquorn Rankine.



PROCESO DEL CICLO*

El ciclo Rankine es un ciclo de planta de fuerza que opera con vapor. Este es producido en una caldera a alta presión para luego ser llevado a una turbina donde produce energía cinética, donde perderá presión. Su camino continúa al seguir hacia un condensador donde lo que queda de vapor pasa a estado líquido para poder entrar a una bomba que le subirá la presión para nuevamente poder ingresarlo a la caldera. Existen algunas mejoras al ciclo, como por ejemplo agregar sobrecalentadores a la salida de la caldera que permitan obtener vapor sobrecalentado para que entre a la turbina y aumentar así el rendimiento del ciclo.

DIAGRAMA T-S DEL CICLO*

El diagrama T-S de un ciclo de Rankine, mostrando el proceso no-ideal. Existen cuatro procesos distintos en el desarrollo del ciclo, los cuales van cambiando el estado del fluido. Estos estados quedan definidos por los números del 1 al 4 en el diagrama T-s. Los procesos que tenemos son los siguientes (suponiendo ciclo ideal con procesos internamente reversibles):


--->El diagrama T-S de un ciclo de Rankine, mostrando el proceso no-ideal.


•Proceso 1-2: Expansión isoentrópica del fluido de trabajo en la turbina desde la presión de la caldera hasta la presión del condensador.

•Proceso 2-3: Transmisión de calor desde el fluido de trabajo al refrigerante a presión constante en el condensador hasta el estado de líquido saturado.

•Proceso 3-4: Compresión isoentrópica en la bomba. En él se aumenta la presión del fluido mediante un compresor o bomba, al que se le aporta un determinado trabajo.

•Proceso 4-1: Transmisión de calor hacia el fluido de trabajo a presión constante en la caldera. En la realidad, los procesos no son internamente reversibles, pues tenemos distintas irreversibilidades y pérdidas, lo que se refleja en que los procesos 1-2 y 3-4 no son isoentrópicos.


VARIABLES*



ECUACIONES*



NOMENCLATURA*

H-Entalpía
Hf-Entalpía del líquido
Hfg-Entalpía de vapor
Ht-número total de entalpías
S-Entropía
Sf-Entropía de líquido
Sfg-Entropía de vapor
St-entropías totales para el proceso de cálculo
T-Temperatura
x-calidad
n-número de extracciones
P-Presión
PT-número total de puntos de estado de las
presiones
V-Volumen especifico
VT-número total de volúmenes específicos de
líquido del ciclo

TERMODINAMICA*

La termodinámica (del griego θερμo-, termo, que significa "calor" y δύναμις, dinámico, que significa "fuerza") es una rama de la física que estudia los efectos de los cambios de la temperatura, presión y volumen de los sistemas a un nivel macroscópico. También podemos decir que la termodinámica nace para explicar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. Para tener un mayor manejo especificaremos que calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.
El punto de partida para la mayor parte de las consideraciones termodinámicas son las leyes de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo.


--->La imagen muestra un sistema termodinámico típico mostrando la entrada desde una fuente de calor (caldera) a la izquierda y la salida a un disipador de calor (condensador) a la derecha. El trabajo se extrae en este caso por una serie de pistones.


PRIMERA LEY DE LA TERMODINAMICA*

También conocida como principio de conservación de la energía para la termodinámica, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Nicolas Léonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.

La ecuación general de la conservación de la energía es la siguiente:

Eentra − Esale = ΔEsistema

Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:

U = Q − W




SEGUNDA LEY DE LA TERMODINAMICA*

Esta ley regula la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, La Segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía tal que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.

Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.

Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.

Enunciado de Clausius

En palabras de Sears es: "No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada".

Enunciado de Kelvin

No existe ningún dispositivo que, operando por ciclos, absorba calor de una única fuente (E.absorbida) y lo convierta íntegramente en trabajo (E.útil).Enunciado de Kelvin-Planck.


*Diagrama del ciclo de Carnot en funcion de la presion y el volumen.


TERCERA LEY DE LA TERMODINAMICA*

La Tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”.

Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica.

Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por las ciencias.




LEY CERO DE LA TERMODINAMICA*

El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x , y) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se les conoce como coordenadas térmicas y dinámicas del sistema.

A este principio se le llama del equilibrio termodinámico. Si dos sistemas A y B están en equilibrio termodinámico, y B está en equilibrio termodinámico con un tercer sistema C, entonces A y C están a su vez en equilibrio termodinámico ya que aquí las fuerzas electroestáticas se contradicen. Este principio es fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición nula.




CICLO TERMODINAMICO*

Se denomina ciclo termodinámico a cualquier serie de procesos termodinámicos tales que, al transcurso de todos ellos, el sistema regrese a su estado inicial; es decir, que la variación de las magnitudes termodinámicas propias del sistema sea nula.

No obstante, a variables como el calor o el trabajo no es aplicable lo anteriormente dicho ya que éstas no son funciones de estado del sistema, sino transferencias de energía entre éste y su entorno. Un hecho característico de los ciclos termodinámicos es que la primera ley de la termodinámica dicta que: la suma de calor y trabajo recibidos por el sistema debe de ser igual a la suma de calor y trabajo realizados por el sistema.


---->El círculo de la imagen representa a un sistema que evoluciona a través de ciclos termodinámicos.


CICLO DE CARNOT*


Se define ciclo de Carnot como un proceso cíclico reversible que utiliza un gas perfecto, y que consta de dos transformaciones isotérmicas y dos adiabáticas, tal como se muestra en la figura.


Los cuatro procesos en el ciclo de Carnot son:

1. El sistema está en la temperatura T2 en el estado a Éste está en contacto con un depósito del calor, que es justo una masa lo bastante grande tal que su temperatura no cambia apreciablemente cuando una cierta cantidad de calor se transfiere hacia el sistema. Es decir el depósito del calor es una fuente constante de la temperatura o recervorio del calor. El sistema entonces experimenta una extensión isotérmica de a a b, con una cantidad de calor absorbido Q2.

2. En el estado b, el sistema se aísla termicamante (y se remueve del contacto con el reservorio de calor) y entonces se expande hasta c.. Durante esta expansión la temperatura disminuye a T1. El itercammbio de calor durante esta parte del ciclo es Qbc=0.

3. En el estado c el sistema se pone en contacto con un reservorio de calor a temperatura T1. Entonces el gas se comprime hasta el estado d, expeliendo calor Q1 en el proceso.

4. Finalmente, el sistema se comprime adibáticamente de nuevo hasta el estado inicial a. El intercambio de calor Qda=0.

La eficacia termica del ciclo está dada por la definición:



CICLO OTTO*

El ciclo Otto es el ciclo termodinámico ideal que se aplica en los motores de combustión interna. Se caracteriza porque todo el calor se aporta a volumen constante. El ciclo consta de seis procesos, dos de los cuales se cancelan mutuamente:

E-A: admisión a presión constante

A-B: compresión isentrópica

B-C: combustión, aporte de calor a volumen constante. La presión se eleva rápidamente antes de comenzar el tiempo útil

C-D: fuerza, expansión isentrópica o parte del ciclo que entrega trabajo

D-A: Escape, cesión del calor residual al ambiente a volumen constante

A-E: Escape, vaciado de la cámara a presión constante.

Hay dos tipos de motores que se rigen por el ciclo de Otto, los motores de dos tiempos y los motores de cuatro tiempos. Este último, junto con el motor diésel, es el más utilizado en los automóviles ya que tiene un buen rendimiento y contamina mucho menos que el motor de dos tiempos.


--->Esquema de un ciclo Otto en un diagrama PV.

CICLO BRAYTON*

El ciclo Brayton, también conocido como ciclo Joule o ciclo Froude, es un ciclo termodinámico consistente, en su forma más sencilla, en una etapa de compresión adiabática, una etapa de calentamiento isóbaro y una expansión adiábatica de un fluido termodinámico compresible. Es uno de los ciclos termodinámicos de más amplia aplicación, al ser la base del motor de turbina de gas, por lo que el producto del ciclo puede ir desde un trabajo mecánico que se emplee para la producción de energía eléctrica o algún otro aprovechamiento –caso de las industrias de generación eléctrica y de algunos motores terrestres o marinos, respectivamente–, hasta la generación de un empuje en un aerorreactor.


--->Diagrama del ciclo Brayton en una turbina de gas, en función de la entropía S y la temperatura T.

lunes, 16 de noviembre de 2009

"Inducción de Campos"





>Campo Magnetico Inducido por un Conductor Recto<



La magnitud del campo magnetico "B" inducido por un conductor recto, por el que circula una intensidad de corriente y a una determinada distancia "D" del conductor, se obtiene la siguiente formula:

B= [(M)(I)]/2¶d

Donde:
I: intensidad de la corriente electrica (A)
d: distancia (m)
B: magnitud del campo magnetico (Teslas)
M: permeabilidad del medio [Teslas (m/A)]
¶: 3.1416

Nota:
Si el medio que rodea el conductor es aire, entonces:
M=Mo=4¶x10^-7 teslas(m/A).



>Campo Magnetico Inducido por una Espira<



Una espira se obtiene al doblar en forma circular un conductor recto.La intensidad del campo magnetico "B" producido por la espira de radio "r" por la que circula una corriente electrica "I" es:

B=MI/2r



>Campo Magnetico Producido por una Bobina<



Un solenoide se forma al enrrollar un alambre de forma elicoidal. La intensidad del campo magnetico "B" producido por un solenoide de n vueltas y longitud "L", por el que circula una intensidad de corriente "I" se obtine:

B=(N.M.I)/L


Ejercicios.-

1.- El campo magnetico en un motor es de 5x10^20 N/C. Calcular la intensidad de la fuerza que actua sobre un electrón inmerso en este campo.

Datos:
e= 5x10^20 N/C
q= -1.6x10^-19

F= q(e)
F= -1.6x10^-19 (5x10^20)
F= 80N


2.-
A que distancia de un protón la intensidda del campo electrico es de 4x10^-7 N/C

Datos:
e=4x10^-7 N/C
q=1.6x10^-19

d= kq/e
d= (9x10^9(1.6x10^-19)) / 4x10^-7
d=0.06 metros

3.- ¿Cual es la intensidad del campo electrico producido por una carga electrica de 3x10^-7 C a una distancia de 2 metros de su centro?

Datos:
q=3x10^-7 C
d= 2 metros

e=kq/d^2
e=(9x10^9(3x10^-7)) / 2^2
e= 675 N/C


>Campo Magnetico<

Se define como la región del espacio donde actuan las lineas de fuerza generadas por un imán.
Este campo es producido por la corriente eléctrica que circula por un conductor y para determinar la expresión del campo magnético producido por una corriente se emplean dos leyes: la ley de Biot-Savart y la ley de Ampère.



>Induccion Electromagnetica<

La inducción electromagnética es el fenómeno que origina la producción de una fuerza electromotriz (f.e.m. o voltaje) en un medio o cuerpo expuesto a un campo magnético variable, o bien en un medio móvil respecto a un campo magnético estático. Es así que, cuando dicho cuerpo es un conductor, se produce una corriente inducida. Este fenómeno fue descubierto por Michael Faraday quién lo expresó indicando que la magnitud del voltaje inducido es proporcional a la variación del flujo magnético (Ley de Faraday).



>Relacion entre Campo Magnetico y Campo Electrico<

Un campo magnetico variable produce un campo electrico y un campo electrico variable produce un campo magnetico.
La magnitud de la fuerza que actua sobre una carga "q" que se mueve con una velocidad "v", producida por un campo magnetico "B", perpendicular a la velocidad "v", es la misma magnitud que la producida por un campo electrico "E", perpendicular tanto a "v"como a "B".
Por tanto, los campos electricos y magneticos se relacionan de la siguiente manera:

F= Bqv
E= F/q
E= vB

Donde:
F= Fuerza sobre la carga electrica (N)
B= Magnitud del campo electrico (Teslas = Wb/m^2)
q= Carga electrica (C)
v= Velocidad d ela carga electrica (m/s)
E= Magnitud del campo electrico (N/C)




Ejercicios.-

1.- Una bobina de 200 vueltas y radio de 30 cm se encuentra rodeada de aire, ¿Cuál es la intensidad del campo magnetico inducida por la bobina; si por ella circula una corriente electrica de 60 A?

Datos:
n= 200 vueltas
M= 4¶x10^-7
I= 60A
r= 0.30 m

B= (N.M.I)/2r
B= ((200)(4¶x10^-7)(60)) / 2(0.30)
B= 2.5132x10^-4 Teslas


2.- La intensidad del campo magnetico inducido en el centro d euna espira de 20 cm de radio que se encuentra en aire y por la cual circula una intensidad de corriente de 25/¶ A es:

Datos:
M= 4¶x10^-7
I= 25/¶ A
r= 0.20 m

B= MI/2r
B= (4¶x10x^-7 (25/¶)) /2 (0.20)
B= 2.5x10^-5 Teslas


3.- El campo magnetico inducido por un solenoide de 40 cm de longitud y 500 vueltas, que se encuentra rodeado por aire y por el cual circula una corriente de 200 A es:

Datos:
n= 500 vueltas
M= 4¶x10^-7
I= 200 A
L= 0.40 m

B= NMI / L
B= ((500)(4¶x10^-7)(200)) / 0.40
B= 0.3114 Teslas
B= 0.¶ Teslas


>La Luz como Onda Electromagnetica<

La luz es una onda electromagnética que se propaga en línea recta, líneas a las que llamamos rayos.
Fue en 1865 cuando Matwer propuso que la luz estaba formada por ondas electromagneticas. Esta condicion le permite a la luz propagarse en el vacio a una velocidad de 300 000 km/s.




>Espectro Electromagnetico<

El espectro electromagnetico esta formado por los siguientes tipos de rayos:
*Rayos Infrarojos: Son emitidos por cualquier cuerpo que este a una temperatura mayor que los cero grados Kelvin, tambien son conocidos como rayos termicos. Un ejemplo son los rayos emitidos por el sol.
*Luz Visible: Son aquellos que pueden ser persividos por el ojo humano. Este tipo de rayos son una porción de los distintos rayos que forman el espectro electromagnetico.
*Rayos X: Este tipo de rayos se generan cuando un az de electrones, que viajan a gran velocidad y en alto vacio, se frenan bruscamente al chocar con un obstaculo. Estos rayos son muy penetrantes por lo que solo se enplean para obtener radiografias.
*Rayos Ultravioleta: Este tipod e rayo tambien son conocidos como "Luz negra", ya que el ojo humano no los abvierte, solo algunos insectos lo pueden distinguir.
*Ondas de Radio: Son las empleadas para transmitir señales a grandes distancias; estas ondas se crean por electrones que osilan en una antena.
*Rayos Gama: Son los producidos durante las transmiciones nucleares.





>Ley de Ampere<

La ley de Ampére explica, que la circulación de la intensidad del campo magnético en un contorno cerrado es igual a la corriente que lo recorre en ese contorno.
"La corriente que circula por un conductor induce un campo magnetico"



>Ley de Faraday<

La Ley de Faraday establece que la corriente inducida en un conductor o bobina es directamente proporcional a la rapidez con que cambia el flujo magnético que lo atraviesa.De donde tenemos que:

E= -▲Q / ▲t

E= FEM inducida (Volts)
▲= Delta
▲Q= Flujo magnetico (Wb)
▲t= Variación de tiempo (segundos)




Ejercicios.-

En el siguiente ejercicio cual es la corriente en cada resistencia:

a) Rt=3Ω+6Ω+9Ω
Rt= 18 Ω

I=108 v /18 Ω
I= 6 A


b) R1= 3Ω R2= 6Ω R3= 12Ω
R=1/3 + 1/6 + 1/12
R=7/12
R=12/7

It= 60/12/7
It=420/12
It=35A